Физмат - физика, математика, информатика, астрономия.

Математика и современное искусство

В двадцатом веке произошли множество научных открытий и взрыв технологического развития физики, биологии и гуманитарных наук. В эпоху Просвещения считалось, что накопленные знания обеспечат нам неограниченную власть над природой и освободят от власти материального мира. Реакция искусства на эти события не всегда была позитивной, о чем свидетельствует отказ Уильяма Блейка от ньютоновского представления о Вселенной, как о часовом механизме. В начале двадцатого века наш взгляд на Вселенную радикально изменился – теория относительности и квантовая механика вернули Вселенной ее тайну и магию. Однако, поскольку во время двух мировых войн научные и политические события столкнулись в непримиримом конфликте, было много серьезных оснований для того, чтобы по‑новому оценить наше место во Вселенной. Хочется надеяться, что в будущем наша мудрость будет развиваться пропорционально нашим знаниям.

Ранее уже рассмотрена роль математики в этих событиях. Здесь я сконцентрируюсь на влиянии математики, порой тесно сплетающейся с новейшей физикой, на культуру и искусство. Искусство нередко становится самым общепринятым выражением философских изменений и личных реакций художников на изменяющуюся технологическую среду. Конечно, будет преувеличением думать, что лишь математика оказывает влияние на различные культурные движения, не следует даже говорить, что она оказывает на них наиболее заметное влияние, но интересно рассмотреть те области, в которых математика играла уникальную и важную роль. Само использование математических терминов в артистической среде наглядно продемонстрировало, что художники впитали язык и идеи математики и преобразовали их в реалии мира искусства.

Подробнее...

Военные игры

Люди всегда любили играть в игры, и в каждую эпоху существовало свое повальное увлечение. Большинство игр – сочетание умения и удачи, и лишь после многократных розыгрышей, нивелирующих влияние случая, выяснялось, кто на самом деле самый хороший игрок. Однако существуют некоторые игры, которые практически ничего не оставляют на откуп судьбе – никакого бросания игральных костей, никакой опоры на удачу. Это стратегические игры, и их исследование – предмет теории игр. Есть также игры, выигрыш в которых в буквальном смысле становится вопросом жизни или смерти. Поскольку грубые тактические ошибки менее дорого обходятся на смоделированном поле битвы, военные стратеги всегда обращались к военным играм, чтобы отточить свои навыки, так что нет ничего удивительного, что шахматы или японская игра го – это идеальные военные игры. Также не стоит удивляться тому, что первым практическим применением теории игр был анализ нового вида войны – скорее всего, последней.

Подробнее...

Об игральных костях и генах

Исследование вероятности в том виде, каким мы видим это сегодня, началось лишь в семнадцатом веке, однако изучение комбинаций и перестановки объектов или событий имеет более длинную историю. Огромный интерес к ним был в Индии, особенно у джайнских математиков, работавших в IV веке до нашей эры. Джайнов вдохновляла религия, но большинство более поздних авторов стремилось изучить эти процессы для того, чтобы провести анализ азартных игр – предсказать возможные результаты и вывести правила, которые сделают игру совершенно честной. Поскольку вероятность стала тесно переплетаться со статистикой, появились новые методы анализа данных как в естественных, так и в общественных науках. Хотя эта наука никогда не покидала игорные столы, статистика в эпоху Просвещения стала математическим способом проведения государственной политики и гарантировать моральную и социальную справедливость.

Подробнее...

Заманчивая бесконечность

Математики и философы всегда боролись с понятием бесконечности. Греки боялись бесконечности и ее противоположности – бесконечно малых величин. Их страх время от времени всплывал на поверхность, особенно это заметно в определениях дифференциального и интегрального исчислений. Наконец в девятнадцатом веке проблема встала в полный рост. Результаты работы многих умов преобразовались во множество различных направлений математики, но сражение с бесконечностью и получившаяся в результате теория множеств была работой одного человека – Георга Кантора. Стимулом к этому стали все увеличивающееся использование бесконечных рядов и сомнения в их обоснованности.

Коши отобразил фундаментальные понятия дифференциального и интегрального исчислений в терминах арифметики, а не геометрии (это называлось арифметизацией исчисления). В отличие от древнегреческой традиции, в которой геометрии предоставлялось почетное место самого точного научного метода, девятнадцатый век поставил своей целью преобразовать математический анализ в арифметические образы. Это в значительной степени достигалось путем все увеличивающегося использования функций многочисленных переменных и функций комплексных переменных, визуальное представление которых часто было невозможно.

Подробнее...

Поля деятельности

С середины восемнадцатого века события в дифференциальном и интегральном исчислениях шли рука об руку с развитием математического анализа физических явлений, особенно движения. Исследуемые темы включали термодинамику, астрономическую механику, гидродинамику, оптику, электричество и магнетизм. Ученые составляли дифференциальные уравнения, описывая эти явления, а затем разрабатывали методы, необходимые для их решения. Единственное точное решение было трудно найти, а потому математики сосредоточились на методах приблизительного решения. Хотя упомянутые выше явления физически выглядели совершенно по‑разному, все они в некотором смысле были связаны со средой. Со времени появления ньютоновских «Начал» бушевали споры относительно реальности «действия на расстоянии»: как, например, тяготение может действовать на большом расстоянии? Что такое тяготение и магнетизм – разные проявления одной и той же силы или совершенно различные явления? Возможно ли, что пространство заполнено некоей средой, известной как эфир? Если да, то что такое эфир и каковы его свойства? Чтобы проиллюстрировать все эти вопросы, я сосредоточусь на истории теории потенциала и ее связи с электромагнетизмом.

Подробнее...

Диалекты алгебры 

В ст. "Бракосочетание алгебры и геометрии" мы видели, как алгебра освобождалась от кандалов геометрической размерности и как, начиная с Декарта, символы алгебры – те самые х и у  – могли обозначать любое число и сочетаться любым способом, предусмотренным правилами арифметики. В этой главе мы познакомимся с развитием алгебры в англоязычных странах, а затем понаблюдаем за развитием этой дисциплине в других государствах Европы. Быстрое увеличение количества диалектов алгебры привело к фундаментальной переоценке понимания самой математики.

ОСНОВНЫЕ АЛГЕБРАИЧЕСКИЕ ПРАВИЛА АРИФМЕТИКИ ДЛЯ ЛЮБЫХ ЧИСЕЛ X, Y  И Z

Подробнее...

Новые геометрии

С тех пор как в третьем столетии до нашей эры появились «Начала», евклидова геометрия (см. "Начала") считалась самой совершенной из всех математических систем. Основанная на самых общих допущениях, она выстраивает удивительно стройное здание математических теорем. Евклидова геометрия – типичная аксиоматическая дедуктивная система. Однако на этом храме геометрии имелось маленькое пятнышко, прыщик, который математики не переставали почесывать. Евклид сформулировал ныне печально известный пятый постулат, согласно которому «если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то, продолженные неограниченно, эти прямые встретятся с той стороны, где углы меньше двух прямых». Этот постулат также известен как постулат о параллельных прямых. В нем говорится: если две прямые линии не параллельны, они в конечном счете пересекутся в некоторой точке. Все согласились, что постулат верен, но было слишком сложно гарантировать истинность этой, по сути, аксиомы, ставшей отправной точкой «Начал». Сперва усилия были направлены на доказывание того, что на самом деле это не постулат, а теорема, которая может быть доказана с помощью других аксиом. Многие обманывались, считая, что им удалось доказать ее, но более тщательное изучение их доказательств непременно показывало, что в них обязательно присутствуют новые предположения, которые, по существу, оказывались перепевкой пятого постулата. Найти ему более очевидную замену оказалось очень трудно. 

Подробнее...

Уравнение пятой степени

В XVI веке математики почти случайно натолкнулись на комплексные числа (см. "Бракосочетание алгебры и геометрии"). К XVIII веку комплексные числа считались расширением области действительных чисел, но работа с ними все еще приводила к ошибке четности, как в труде Леонарда Эйлера «Универсальная арифметика» (1767–1770). Он писал, что √ ‑ 2х√ ‑ 3 = √6, а не ‑√6, смущая более поздних авторов, писавших на ту же тему. Даже Карл Фридрих Гаусс (1777–1855) в своем великом труде по теории чисел «Арифметические исследования» (1801) избегал использования так называемых «мнимых чисел». Как мне кажется, самая важная часть этой работы – первое доказательство фундаментальной теоремы алгебры. Гаусс понял, насколько важной была эта теорема, создав за последующие годы несколько дополнительных доказательств. В 1849 году он переделал первый вариант, на сей раз использовав комплексные числа. Пользуясь современными терминами, можно сказать, что для любого конечного многочленного уравнения с действительными или комплексными коэффициентами все его корни будут действительными или комплексными числами. Таким образом, мы получаем отрицательный ответ на давний вопрос о том, требует ли решение полиномиальных уравнений высокого порядка создания чисел более высокого порядка, чем комплексные.

Подробнее...

Поиск по сайту

Голосование

Вы бы поддержали сайт новыми материалами за символическую плату?
 

Сейчас в чате



Нет пользователей online



Rambler's Top100